Drug Interactions of Tetrahydrocannabinol and Cannabidiol in Cannabinoid Drugs
Thomas Herdegen 1, Ingolf Cascorbi
1Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
Affiliationer
Background: Cannabinoid drugs containing tetrahydrocannabinol (THC), or its structural analogues, as monotherapeutic agents or as extracts or botanical preparations with or without cannabidiol (CBD) are often prescribed to multimorbid patients who are taking multiple drugs. This raises the question of the risk of drug interactions.
Methods: This review of the pharmacokinetics and pharmacodynamics of interactions with cannabinoid drugs and their potential effects is based on pertinent publications retrieved by a selective literature search.
Results: As THC and CBD are largely metabolized in the liver, their bioavailability after oral or oral-mucosal administration is low (6-8% and 11-13%, respectively). The plasma concentrations of THC and its active metabolite 11-OH-THC can be increased by strong CYP3A4 inhibitors (verapamil, clarithromycin) and decreased by strong CYP3A4 inductors (rifampicin, carbamazepine). The clinical significance of these effects is unclear because of the variable plasma level and therapeutic spectrum of THC. The metabolism of CBD is less dependent on cytochrome P450 enzymes than that of THC. THC and CBD inhibit CYP2C and CYP3A4; the corresponding clinically relevant drug interactions probably are likely to arise only with THC doses above 30 mg/day and CBD doses above 300 mg/day.
Conclusion: Potential drug interactions with THC and CBD are probably of little importance at low or moderate doses. Strong CYP inhibitors or inductors can intensify or weaken their effect. Slowly ramping up the dose of oral cannabinoid drugs can lessen their pharmacodynamic interactions, which can generally be well controlled. Administration by inhalation can worsen the interactions.